The Munc18-1 domain 3a hinge-loop controls syntaxin-1A nanodomain assembly and engagement with the SNARE complex during secretory vesicle priming
نویسندگان
چکیده
Munc18-1 and syntaxin-1A control SNARE-dependent neuroexocytosis and are organized in nanodomains on the plasma membrane of neurons and neurosecretory cells. Deciphering the intra- and intermolecular steps via which they prepare secretory vesicles (SVs) for fusion is key to understanding neuronal and hormonal communication. Here, we demonstrate that expression of a priming-deficient mutant lacking 17 residues of the domain 3a hinge-loop (Munc18-1(Δ317-333)) in PC12 cells engineered to knockdown Munc18-1/2 markedly prolonged SV docking. Single-molecule analysis revealed nonhomogeneous diffusion of Munc18-1 and syntaxin-1A in and out of partially overlapping nanodomains. Whereas Munc18-1(WT) mobility increased in response to stimulation, syntaxin-1A became less mobile. These Munc18-1 and syntaxin-1A diffusional switches were blocked by the expression of Munc18-1(Δ317-333), suggesting that a conformational change in the Munc18-1 hinge-loop controls syntaxin-1A and subsequent SNARE complex assembly. Accordingly, syntaxin-1A confinement was prevented by expression of botulinum neurotoxin type E. The Munc18-1 domain 3a hinge-loop therefore controls syntaxin-1A engagement into SNARE complex formation during priming.
منابع مشابه
Domain 3a of Munc18-1 plays a crucial role at the priming stage of exocytosis.
Munc18-1 is believed to prime or stimulate SNARE-mediated membrane fusion/exocytosis through binding to the SNARE complex, in addition to chaperoning its cognate syntaxins. Nevertheless, a Munc18-1 mutant that selectively loses the priming function while retaining the syntaxin chaperoning activity has not been identified. As a consequence, the mechanism that mediates Munc18-1-dependent priming ...
متن کاملMunc18-1 binding to the neuronal SNARE complex controls synaptic vesicle priming
Munc18-1 and soluble NSF attachment protein receptors (SNAREs) are critical for synaptic vesicle fusion. Munc18-1 binds to the SNARE syntaxin-1 folded into a closed conformation and to SNARE complexes containing open syntaxin-1. Understanding which steps in fusion depend on the latter interaction and whether Munc18-1 competes with other factors such as complexins for SNARE complex binding is cr...
متن کاملThe Munc18-1 domain 3a loop is essential for neuroexocytosis but not for syntaxin-1A transport to the plasma membrane.
Munc18-1 plays a dual role in transporting syntaxin-1A (Sx1a) to the plasma membrane and regulating SNARE-mediated membrane fusion. As impairment of either function leads to a common exocytic defect, assigning specific roles for various Munc18-1 domains has proved difficult. Structural analyses predict that a loop region in Munc18-1 domain 3a could catalyse the conversion of Sx1a from a 'closed...
متن کاملEvidence for a conserved inhibitory binding mode between the membrane fusion assembly factors Munc18 and syntaxin in animals.
The membrane fusion necessary for vesicle trafficking is driven by the assembly of heterologous SNARE proteins orchestrated by the binding of Sec1/Munc18 (SM) proteins to specific syntaxin SNARE proteins. However, the precise mode of interaction between SM proteins and SNAREs is debated, as contrasting binding modes have been found for different members of the SM protein family, including the t...
متن کاملInteraction of Munc18 and Syntaxin in the regulation of insulin secretion.
Syntaxin1A and Munc18-1 play essential roles in exocytosis. However, the molecular mechanism and the functional roles of their interaction in insulin secretion remain to be explored. Using membrane capacitance measurement, we examine effect of overexpressing Munc18-1 on exocytosis in pancreatic beta cells. The results show that Munc18-1 negatively regulates vesicle fusion. To probe the interact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 214 شماره
صفحات -
تاریخ انتشار 2016